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SUMMARY  

The aim of the present study was to examine the use of a variety of statistical 
discriminant functions in the classification of genotoxic and non-genotoxic carcinogens. 
To this purpose, the data from an experiment conducted by van Delft et al. (2005) were 
used. The investigated methods included DQDA, DLDA, boosting trees, bagging trees, 
bagboosting trees, KNN, and SVM. Two gene selection methods were examined: first 
using tests based on a linear model (Smyth et al., 2004), with a multiple-testing 
correction of the resulting p-values, and the second based on the tests applied to 
re-sampled datasets. The outcomes suggest that, when the discrimination between 
genotoxic and non-genotoxic carcinogens is of interest, the proper choice of 
discrimination method is essential. Misclassification errors may also be a confirmation 
of the correctness of gene selection methods. 
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1. Introduction 

Chemical compounds can be genotoxic. Genotoxicity, in turn, may result in 

carcinogenicity. Therefore the screening of chemical compounds for their 

genotoxicity is an important issue for the control of risk of cancer. An important 

question related to the problem of screening of chemical compounds for their 
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genotoxicity is that of which genes are affected most after exposure to 

genotoxic compounds. 

Because microarrays enable the simultaneous investigation of the 

expression levels of thousands of genes, they are a useful tool for discrimination 

between genotoxic and non-genotoxic compounds.  

Discrimination between classes is a well-known problem in statistical 

methodology. There are many methods available for this purpose. However, the 

majority of them were developed under the assumption that the number of 

features (variables) which can be used to build a discrimination (classification) 

rule is smaller than the number of observations on whose basis the rule can be 

constructed. In the microarray context the situation is different: the number of 

features (genes) is much larger than the number of observations (arrays). 

Hence when discrimination based on microarray data is considered, the 

choice of a suitable discrimination procedure becomes an important issue. 

Recently the issue has attracted considerable attention (see e.g. Dudoit et al., 

2002; Lee et al., 2005; Statnikov et al., 2005; Van Sanden et al. 2007, 2008). 

The results indicate that, although a few methods – such as random forests or 

support vector machines – seem to perform better than the others, there is no 

single method that would be suitable for all applications. 

Additionally, it has been reported that the selection of genes for inclusion in 

the discrimination rule may be an important issue as well. Lee et al. (2005) 

mention that various methods of selection of active genes applied to the same 

set of microarray data can give different sets of genes and consequently lead to 

different discrimination results. 

From these reports it is clear that the result of discrimination between 

genotoxic and non-genotoxic compounds based on microarray data may depend 

on the applied gene selection and discrimination methods. 

Van Delft et al. (2005) applied several techniques (Pearson correlation 

analysis, nearest shrunken centroids analysis, K-nearest neighbour analysis, and 

weighted voting) to discriminate between sets of 11 genotoxic carcinogens and 

9 non-genotoxic carcinogens based on microarray data. They did not observe 
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clear differences between the results obtained for the different methods (apart 

from the poorer performance of Pearson analysis). The aim of the current study 

is to extend the investigation conducted by van Delft et al. (2004, 2005) by 

considering alternative gene selection and discrimination methods.  

2. Materials and methods 

2.1.  Microarray experiment 

The influence of carcinogenic compounds on the expression levels of a set of 

596 genes obtained from HepG2 microarrays was investigated. Each gene was 

spotted four times on each array. Twenty carcinogens were used in the study: 11 

of them were genotoxic (GTX) and 9 were non-genotoxic (NGTX). The dataset 

included 44 microarrays, obtained from 22 dye-swap comparisons. In each 

comparison, a carcinogen was compared to a control (a solvent). The 

microarrays were divided into two sets (see Table 1): a training dataset 

(32 microarrays, with 16 carcinogenic chemical compounds) and a testing 

dataset (12 microarrays, with 6 carcinogenic chemical compounds). BaP and 

DEHP were used both in the training and in the testing sets. A detailed 

description of the experiment can be found in van Delft et al. (2004).  
 

Table 1. Chemical compounds (after van Delft et al 2004, 2005 ) 

Chemical 
treatment 

GTX class 
/NGTX 

Chemical 
treatment 

GTX class 
/NGTX 

Chemical 
treatment 

GTX class 
/NGTX 

Training set Training set Testing set 

MMS  ALK MMC  X-LINK  DMN ALK 
NMU  ALK DEHP-1 NGTX BaP-2  PAH  
NNK  ALK  DIOX NGTX carboPt  X-LINK  
BaP-1  PAH  PCP NGTX DEHP NGTX 
DBA  PAH PhB NGTX RES NGTX 
FA  PAH TCDD  NGTX TCP  NGTX 
cisPt  X-LINK TCE NGTX   
CPh  X-LINK  TPA  NGTX   
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2.2.  Microarray data normalization, gene selection, and discrimination 
methods  

Normalization 

The raw data in the ImaGene format were transferred to R and Bioconductor. 

Poor spots, i.e. spots that were flagged by ImaGene during the experiment, were 

not included in the further analysis.  

First, the intensity values were corrected for background using a con-

volution of the normal and exponential distributions, where the normal part 

represents the background and the exponential part represents the signal 

(Smyth, 2005).  

Next, within-array normalization of background-corrected intensities for 

chemical compounds vs. the control (solvents) was carried out using the print-

tip loess procedure (Yang et.al., 2002). The normalized intensity values were 

used to obtain logarithmic transforms of the ratios of red (Cy3) and green (Cy5) 

intensities (M values). 

Finally, for each gene, a linear model was fitted to the M values (Smyth 

2004) obtained from the training dataset. The aim of this step was (1) to adjust 

for the dye effect and (2) to choose genes differentially expressed in GTX and 

NGTX groups. The model contained the indicator variables for the type of the 

carcinogen (GTX vs. NGTX) and for the dye (Cy5 vs. Cy3). Because each array 

contained 4 replicates of each gene, the between-replicate correlation was 

incorporated into the model (Smyth et. al., 2005). The M values were corrected 

for the dye effect by subtracting the estimate obtained from the model.  

Gene selection 

Based on the linear model, subsets of differentially expressed genes, i.e. genes 

with a statistically significant, at the two-sided 5% significance level, difference 

in expression for the GTX and NGTX carcinogens, were obtained by applying a 

t-test. The tests were adjusted for multiplicity using the Benjamini & Hochberg 

method (BH; Benjamini and Hochberg, 1995).  
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The choice of differentially expressed genes was also made by applying the 

linear model to bootstrap samples. Bootstrap samples were created by sampling 

with replacement from the set of 44 microarrays. The resampling procedure was 

repeated 1000 times. For each bootstrap sample a linear model, as described in 

Section 2.2, was fitted, with the use of the BH multiple-testing procedure. For 

each gene, the mean of the adjusted p-values was calculated and the genes were 

ordered according to the mean.  

2.3.  Correlations used for discriminating between GTX and NGTX 
compounds 

For such selected genes, the values of ratios of gene expression logarithms from 

each matrix, representing the individual substance (microarray) GTX (and 

correspondingly NGTX) with “averaged matrices” of the group GTX 

(respectively NGTX), belonging to the learning group, were investigated in 

terms of correlation. Classification in the discriminated group of chemical 

compounds may be made to the group with the largest Pearson correlation 

coefficient. 

2.4.  Discriminant procedures  

Two sets of genes (see Table 2) were used in the construction of discrimination 

rules by applying different discrimination methods. The following methods 

were considered: support vector machines (SVM), diagonal linear discriminant 

analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), k nearest 

neighbour (k-NN), bagging trees, adaptive boosting trees, and bagboosting trees 

(Webb 2002, Dettling 2004). For each of the two sets of genes presented in 

Table 2, the discrimination methods were applied to subsequently enlarged sets 

of genes, which included 2, 5, 10, 15, …, 100 of the highest ranked genes. 

Evaluation of the misclassification error for the constructed discrimination 

procedures was performed by estimation of the error rate on the test set and by 

8-fold cross-validation applied to the whole dataset.  
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Table 2. Sets of most important genes differentiating the GTX and NGTX carcinogens. 
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SAT, ACTG1, TYMS, BAX, AHR, JAG1, ANXA5, SMPD2, VMP1, RPS19, MT1X, 
PCNA, BHMT2, PIM1, AUTL1, RPL13 , ORM1, ABCC3, SLC2A1, CTSB, TTR, ID1, 
CASP8, MCL1, APOC3, HAMP, MYC, MDM2 , C4BPA, ITGB1, PSME1, AMD1, 
JUND, POLB, HIF1A, ODC1, VR22, CDK3 , PPP3R1, PTGS1, Calreticulin, SOD1, 
CEACAM6, FUT1, RPL13A, ZNF9, DNCL1, CDKN1A, CHK, MT2A, ACTB, PBP, 
TK1, NF1, SHB, SULT1A3, FDXR, AMACR, TFRC, YWHAZ , HPRT1 , FGA, 
KIAA0101, PTK2, ALB, ERCC1, PRDX1 , ADM, SERPINA3, PC326, PTPN9, RPL13 , 
ZFP36, PTMA, LIPC, CDH2, SEC61A2, BHMT, TIMP1, TOP1, RAD52, BIRC3, 
NDUFS8, SERPINB2, MMP3, P311, ABCG2 , YWHAZ , PSMD3, AMBP, ADH4, DBI, 
SERPINA1, CSF1R, APG-1, RAD23B, MRPL40, UGT1A1, HYOU1, CASP3 
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TYMS, ACTG1, AHR, BAX, PCNA, JAG1, BHMT2, SAT, MYC, CASP8, PIM1, 
ANXA5, AUTL1, ORM1, DNCL1, ABCC3, TTR, HAMP, POLB, ODC1, ACTB, ID1, 
CTSB, PTGS1, GAPD, KIAA0101, PRDX2, MDM2 , RPS19, Calreticulin-, SHB, VMP1, 
SMPD2, PRDX1 , PTK2, FGA, PSME1, MT1X, AMD1, SOD1, PPP3R1, CDKN1A, T-
cell cyclophilin, SLC2A1, CHK, PTMA, SULT1A3, FUT1, CEACAM6, ZFP36, ITGB1, 
UGT1A1, TK1, ATF3, RPL13 , PBP, ABCG2 , BHMT, STMN1, FDXR, JUND, NF1, 
MCL1, PC326, PPARA, HSPA5, PGRMC1, TOP1, MRPL40, SERPINA3, ERCC1, 
C5R1, CDK3 , PSMD3, APOC3, HIF1A, SULT1C1, AMBP, VR22, SERPINB2, TPH, 
P311, GADD153, PRDX1, EPHX1, TUBA, CGI-45, ACAA1, HPRT1 , NDUFS8, 
LGALS3, CD66e, HRAS, TIMP1, PTPN9, ENC1, APG-1, C4BPA, RODH-4, SEC61A2 

va
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AHR, SERPINB2, ACTGP3, CASP8, JAG1, PPP3R1, MYC, CALB1, ZFP36, SAT, 
ODC1, HIF1A, MTIE, SLC26A3, HDAC1, COL15A1, PCNA, TYMS, UGTIA3, BAX, 
CDKNIA, UCP2, CEACAM6, TTR, NOL5A, CASP4 

3. Results 

3.1.  Comparison of the selected sets of genes 

Table 2 presents the highest ranked 100 genes obtained by each of the gene 

selection methods described in Section 2.2. 

 The first row presents the set of the 100 most significant genes ordered by 

adjusted p-value obtained from the linear model, which was applied to 32 

matrices from the learning set. In what follows, this set is called set1. 

The second row of Table 2 presents the 100 highest ranked genes obtained 

by the use of linear model combined with resampling, as described in 

Section 2.2. In what follows, this set is called set2.  

Note that the order of genes included in set1 and set2 differs. This affects 

the discriminating power of the successive subsets (see Section 3.2). There are 

77 genes contained in both set1and set2.  
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The third row of Table 2 presents the 27 genes selected by van Delft et al. 

(2005). In what follows, this set of genes is called set3. There are 17 genes from 

set3 which are also contained in set1 and set2. 

3.2.  Investigation of correlations of gene expressions on microarray spots  

Table 3 presents the results of analysis of correlations between mean expression 

on four repeated spots for each gene and the corresponding values of gene 

expression levels averaged over all GTX (or NGTX) microarrays (see Section 

2.3 and Table 1). Discrimination between GTX and non-genotoxic group is 

done here on the basis of the higher of two considered correlations connected 

with the chemical compound in question.  

If classification based on larger correlation coefficient is non-concordant 

with the learning vector (real class belonging), the appropriate microarray is 

denoted by a star with the description of the GTX / NGTX group. From Table 3 

we can see that the two misclassified GTX microarrays belong to the PAH 

genotoxic group. One from the NGTX group has important, discordant 

difference in correlations.  

The analysis points to microarrays which are atypical, difficult to classify 

based on correlation analysis. Those microarrays are also difficult to classify by 

the examined discriminant methods whose summarized results are presented in 

the next section (without considering in detail the microarrays which are 

classified incorrectly). 

The most difficult to discriminate were microarrays from GTX: FA 

(Fluoranthene) and GTX BaP-2 (Benzopyrene). Both FA (Fluoranthene) and 

Ba-P (Benzopyrene) are chemical compounds from the GTX group PAX 

(polycyclic aromatic hydrocarbons).  

One problematic microarray, Dioxane, from the NGTX group is also 

visible, where the difference between the larger and smaller correlation is very 

small (0.03), so the decision to select NGTX is doubtful. This microarray is also 

difficult to classify correctly in the discriminant analyses examined in the 

following section.  
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Table 3. Pearson correlation coefficients between gene expression levels for all 
examined microarrays with averaged gene expression on all microarrays from the GTX 

and NGTX groups respectively. 

 
Chemical 
compound 

Sample 
Correlation with 

averaged microarrays 
from group: 

Non- 
concor-
dant 
decision 

Group 

   GTX NGTX   
1 GTX MMS learning 0.48 -0.14    
2 GTX MNU learning 0.72 0.01    
3 GTX NNK learning 0.67 -0.34    
4 GTX BaP-1 learning 0.69 0.07    
5 GTX DBA learning 0.62 -0.18    
6 GTX FA learning 0.15 0.50 * GTX- PAH 
7 GTX cisPT learning 0.55 0.34    
8 GTX CP learning 0.36 0.39    
9 GTX MMC learning 0.68 0.22    
10 GTX DMN testing 0.61 0.50    
11 GTX BaP-2 testing 0.33 0.61 * GTX- PAH  
12 GTX carboPt testing 0.46 0.33    
13 NGTX DEHP-1 learning -0.01 0.91    
14 NGTX Dioxane learning 0.57 0.60    
15 NGTX PCP learning 0.29 0.87    
16 NGTX PhB learning -0.08 0.88    
17 NGTX TCDD learning 0.05 0.85    
18 NGTX TCE learning 0.55 0.25 * NGTX 
19 NGTX TPA learning -0.05 0.89    
20 NGTX DEHP-2 testing 0.30 0.88    
21 NGTX reserpine testing 0.47 0.43 * NGTX 
22 NGTX TCP testing -0.11 0.76    

 

3.3. The performance of the discrimination methods 

Misclassification errors in the test dataset 

Figures 1–2 and 3–4 show the misclassification errors estimated using the test 

dataset for different discrimination methods applied to a sequentially enlarged 

set of genes from set1 (Fig. 1–2) and set2 (Fig. 3–4). 
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Figure. 1. Test classification errors of discriminant methods SVM, DLDA, DQDA, 

k-NN for ascending subsets of set1 (from 2 to 100 genes). 

 

 
Figure 2. Test classification errors of discriminant methods: adaptive boosting trees 
(AdaBoost), bagboosting trees (BagBoost) and bagging trees, for ascending subsets 

of set1 (from 2 to 100 genes). 
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Figure 3. Test classification errors of discriminant methods: SVM, DLDA, DQDA, 

k-NN for ascending subsets of set2 (from 2 to 100 genes). 

 

 
Figure 4. Test classification errors of discriminant methods: adaptive boosting trees 
(AdaBoost), bagboosting trees (BagBoost) and bagging trees, for ascending subsets 

of set2 (from 2 to 100 genes) 

 

The misclassification error rates estimated by an 8-fold cross-validation  

Figures 5–6 and 7–8 show the misclassification error rates estimated by 

an 8-fold cross-validation (CV-8) for different discrimination methods applied 

to a sequentially enlarged set of genes from set1 (Fig. 5–6) and set2 (Fig. 7–8). 
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Figure 5. Classification cross-validation errors of discriminant methods SVM, DLDA, 

DQDA, k-NN for ascending subsets of set1 (from 2 to 100 genes) 

 

 
Figure 6. Cross-validation classification errors of discriminant methods: adaptive 

boosting trees (AdaBoost), bagboosting trees (BagBoost) and bagging trees, 
for successive subsets of set1 (from 2 to 100 genes). 

4. Discussion and conclusions 

Figures 5–8 indicate that the misclassification error estimates obtained using the 

8-fold cross-validation are, in general, smaller than the estimates obtained by 

applying the discrimination procedures to the test dataset (see Figures 1–4).   
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Figure 7. Cross-validation classification errors of discriminant methods: adaptive 

boosting trees (AdaBoost), bagboosting trees (BagBoost) and bagging trees, 
for successive subsets of set2 (from 2 to 100 genes). 

 

 
Figure 8. Cross-validation classification errors of discriminant methods: adaptive 

boosting trees (AdaBoost), bagboosting trees (BagBoost) and bagging trees, 
for succeeding subsets of set2 (from 2 to 100 genes). 

This may be due to the fact that the test dataset contains six microarrays that are 

“atypical” in the sense that they contain at most six differentially expressed 

genes, as reported by van Delft et al. (2004). After exclusion of these arrays, 

van Delft et al. (2004) noted an improvement in the estimates of the 

misclassification errors. In our analysis we retained all the 12 microarrays in 
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the test dataset. Note that, in the cross-validation, the “atypical” arrays are 

distributed in different folds. Thus their influence may be discounted. 

The CV-based error estimates do not suggest any method that would 

consistently outperform all the others.  

All the figures suggest that, in general, the use of only a few genes (2 or 5) 

results in a larger misclassification error. The reason may be that a limited set of 

genes may also have a limited discriminative power, irrespective of whether the 

genes themselves are important for discrimination. A similar observation was 

made, based on a simulation study, by Van Sanden et al. (2007, 2008).  

In the analysis of the same dataset, van Delft et al. (2005) did not observe 

clear differences (apart from the poorer performance of Pearson analysis) 

between the results obtained for different discrimination methods, which 

included the Pearson correlation analysis, nearest shrunken centroids analysis, 

K-nearest neighbour analysis, and weighted voting. This is consistent with our 

finding, and may be due to the limited number of microarrays that are available 

for the analysis. However, the misclassification errors for the discrimination 

methods considered in the current paper, as estimated by cross-validation, are 

about two times smaller than those reported by van Delft et al. (2005) for the 

same dataset. This might be seen as a suggestion that the more advanced 

discrimination techniques might yield better results. However, it might also be 

due to the different pre-processing steps used by van Delft et al. (2005) to 

prepare the data for the analysis.  

It is also worth noting that 17 of the genes indicated by van Delft et al. 

(2005) as important for discrimination purposes were included in the set of 

genes most often selected for building discrimination rules considered in our 

paper. The small misclassification errors may be also a confirmation of the 

correctness of gene selection methods. To conclude, our results suggest that, 

when discrimination between genotoxic and non-genotoxic carcinogens is of 

interest, the choice of the discrimination method may be important. However, 

further evaluation on more extensive data is warranted. In particular, the 

possibility of using ensembles of classifiers may be worth investigating. 
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