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SUMMARY

The aim of the present study was to examine the afsa variety of statistical
discriminant functions in the classification of gémxic and non-genotoxic carcinogens.
To this purpose, the data from an experiment catedulsy van Delfet al. (2005) were
used. The investigated methods included DQDA, DLDB#&gsting trees, bagging trees,
bagboosting trees, KNN, and SVM. Two gene selectimthods were examined: first
using tests based on a linear model (Smstthal., 2004), with a multiple-testing
correction of the resulting p-values, and the sdcbased on the tests applied to
re-sampled datasets. The outcomes suggest than wiee discrimination between
genotoxic and non-genotoxic carcinogens is of @dgr the proper choice of
discrimination method is essential. Misclassifioatierrors may also be a confirmation
of the correctness of gene selection methods.
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1. Introduction

Chemical compounds can be genotoxic. Genotoxiaityturn, may result in
carcinogenicity. Therefore the screening of chemmampounds for their
genotoxicity is an important issue for the contbtisk of cancer. An important
guestion related to the problem of screening ofibal compounds for their
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genotoxicity is that of which genes are affectedsimafter exposure to
genotoxic compounds.

Because microarrays enable the simultaneous igatieth of the
expression levels of thousands of genes, they asefal tool for discrimination
between genotoxic and non-genotoxic compounds.

Discrimination between classes is a well-known pewb in statistical
methodology. There are many methods availablehisrgurpose. However, the
majority of them were developed under the assumpti@t the number of
features (variables) which can be used to buildserighination (classification)
rule is smaller than the number of observationsvbnse basis the rule can be
constructed. In the microarray context the situaigdifferent: the number of
features (genes) is much larger than the numbebsérvations (arrays).

Hence when discrimination based on microarray dataonsidered, the
choice of a suitable discrimination procedure bez®nan important issue.
Recently the issue has attracted considerabletiatie(see e.g. Dudoitt al.,
2002; Leeet al., 2005; Statnikowt al., 2005; Van Sandeea al. 2007, 2008).
The results indicate that, although a few methodsich as random forests or
support vector machines — seem to perform better the others, there is no
single method that would be suitable for all apgtimns.

Additionally, it has been reported that the setactf genes for inclusion in
the discrimination rule may be an important issaengll. Leeet al. (2005)
mention that various methods of selection of actjgaees applied to the same
set of microarray data can give different setsesfeg and consequently lead to
different discrimination results.

From these reports it is clear that the result istrimination between
genotoxic and non-genotoxic compounds based oroari@y data may depend
on the applied gene selection and discriminatiothous.

Van Delft et al. (2005) applied several techniques (Pearson ctioela
analysis, nearest shrunken centroids analysis,afesé neighbour analysis, and
weighted voting) to discriminate between sets ofé&fhotoxic carcinogens and
9 non-genotoxic carcinogens based on microarrag. ddtey did not observe
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clear differences between the results obtainedherdifferent methods (apart
from the poorer performance of Pearson analysts. dim of the current study
is to extend the investigation conducted by vanftDetlal. (2004, 2005) by
considering alternative gene selection and disadtivon methods.

2. Materials and methods

2.1. Microarray experiment

The influence of carcinogenic compounds on the esgion levels of a set of
596 genes obtained from HepG2 microarrays was figated. Each gene was
spotted four times on each array. Twenty carcinsgegre used in the study: 11
of them were genotoxic (GTX) and 9 were non-genictMGTX). The dataset

included 44 microarrays, obtained from 22 dye-sweamparisons. In each
comparison, a carcinogen was compared to a corfaolsolvent). The

microarrays were divided into two sets (see Tabje dl training dataset
(32 microarrays, with 16 carcinogenic chemical compuls) and a testing
dataset (12 microarrays, with 6 carcinogenic chalmiompounds). BaP and
DEHP were used both in the training and in theirigssets. A detailed

description of the experiment can be found in vaift&t al. (2004).

Table 1. Chemical compounds (after van Delft &Qdl4, 2005 )

Chemical GTX class Chemical GTX class Chemical GTX class
treatment /NGTX treatment INGTX treatment INGTX

Training set Training set Testing set

MMS ALK MMC X-LINK  DMN ALK
NMU ALK DEHP-1 NGTX BaP-2 PAH
NNK ALK DIOX NGTX carboPt X-LINK
BaP-1 PAH PCP NGTX DEHP NGTX
DBA PAH PhB NGTX RES NGTX
FA PAH TCDD NGTX TCP NGTX
cisPt X-LINK  TCE NGTX

CPh X-LINK TPA NGTX
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2.2.Microarray data normalization, gene selection, anddiscrimination
methods

Normalization

The raw data in the ImaGene format were transfeiweld and Bioconductor.
Poor spots, i.e. spots that were flagged by Ima@eneg the experiment, were
not included in the further analysis.

First, the intensity values were corrected for lgaoknd using a con-
volution of the normal and exponential distribusprwhere the normal part
represents the background and the exponential negmesents the signal
(Smyth, 2005).

Next, within-array normalization of background-cmied intensities for
chemical compounds vs. the control (solvents) veased out using the print-
tip loess procedure (Yang et.al., 2002). The namedlintensity values were
used to obtain logarithmic transforms of the ratibsed (Cy3) and green (Cy5)
intensities (M values).

Finally, for each gene, a linear model was fittedtite M values (Smyth
2004) obtained from the training dataset. The dirthis step was (1) to adjust
for the dye effect and (2) to choose genes diftéaliy expressed in GTX and
NGTX groups. The model contained the indicatoralalgs for the type of the
carcinogen (GTX vs. NGTX) and for the dye (Cy5@®g3). Because each array
contained 4 replicates of each gene, the betwegdicaige correlation was
incorporated into the model (Smyth et. al., 200%)e M values were corrected
for the dye effect by subtracting the estimate iolethfrom the model.

Gene selection

Based on the linear model, subsets of differegtiedpressed genes, i.e. genes
with a statistically significant, at the two-sid&% significance level, difference
in expression for the GTX and NGTX carcinogens,enastained by applying a
t-test. The tests were adjusted for multiplicityingsthe Benjamini & Hochberg
method (BH; Benjamini and Hochberg, 1995).
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The choice of differentially expressed genes was alade by applying the
linear model to bootstrap samples. Bootstrap sasnpére created by sampling
with replacement from the set of 44 microarrayse Tésampling procedure was
repeated 1000 times. For each bootstrap sampieearlimodel, as described in
Section 2.2, was fitted, with the use of the BH tipig-testing procedure. For
each gene, the mean of the adjusted p-values Wadatad and the genes were
ordered according to the mean.

2.3.Correlations used for discriminating between GTX ad NGTX
compounds

For such selected genes, the values of ratiosrad ggpression logarithms from
each matrix, representing the individual substatmoéroarray) GTX (and

correspondingly NGTX) with “averaged matrices” ohet group GTX

(respectively NGTX), belonging to the learning gsowere investigated in
terms of correlation. Classification in the disdriated group of chemical
compounds may be made to the group with the larBestrson correlation
coefficient.

2.4. Discriminant procedures

Two sets of genes (see Table 2) were used in thetroction of discrimination
rules by applying different discrimination methodhe following methods
were considered: support vector machines (SVMYyatial linear discriminant
analysis (DLDA), diagonal quadratic discriminanabsis (DQDA), k nearest
neighbour (k-NN), bagging trees, adaptive boostiags, and bagboosting trees
(Webb 2002, Dettling 2004). For each of the twcs s#t genes presented in
Table 2, the discrimination methods were appliedubsequently enlarged sets
of genes, which included 2, 5, 10, 15, ..., 100 efltighest ranked genes.

Evaluation of the misclassification error for thenstructed discrimination
procedures was performed by estimation of the eatar on the test set and by
8-fold cross-validation applied to the whole datase
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Table 2.Sets of most important genes differentiating thexG@hd NGTX carcinogens.

SAT, ACTG1, TYMS, BAX, AHR, JAG1, ANXA5, SMPD2, VMPRPS19, MT1X,
PCNA, BHMTZ2, PIM1, AUTL1, RPL13, ORM1, ABCC3, SLC2A1, CTSBIR, ID1,
CASP8, MCL1, APOC3, HAMP, MYC, MDM2 , C4BPA, ITGB1, PSMEAMD1,
JUND, POLB, HIF1A, ODC1, VR22, CDK3 , PPP3R1, PTGS1, &miulin, SOD1,
CEACAMG, FUT1, RPL13A, ZNF9, DNCL1, CDKN1A, CHK, MT2ACTB, PBP,
TK1, NF1, SHB, SULT1A3, FDXR, AMACR, TFRC, YWHAZ , HPRTFGA,
KIAA0101, PTK2, ALB, ERCC1, PRDX1 , ADM, SERPINA3, PC3ZTPN9, RPL13,
ZFP36, PTMA, LIPC, CDH2, SEC61A2, BHMT, TIMP1, TOP1, R3N) BIRC3,
NDUFS8, SERPINB2, MMP3, P311, ABCG2 , YWHAZ , PSMD3VIBP, ADH4, DBI,
SERPINAL, CSF1R, APG-1, RAD23B, MRPL40, UGT1Al, HYOWASP3

Linear model - LS setl

TYMS, ACTG1, AHR, BAX, PCNA, JAG1, BHMT2, SAT, MYC, CAZS, PIM1,
ANXAS5, AUTL1, ORM1, DNCL1, ABCC3, TTR, HAMP, POLB, ODC1, A®; ID1,
CTSB, PTGS1, GAPD, KIAA0101, PRDX2, MDM2 , RPS19, Cédrdin-, SHB, VMP1,
SMPD2, PRDX1 , PTK2, FGA, PSME1, MT1X, AMD1, SODEP3R1, CDKN1A, T-
cell cyclophilin, SLC2A1, CHK, PTMA, SULT1A3, FUT1, G¥2AM6, ZFP36, ITGB1,
UGT1Al, TK1, ATF3, RPL13, PBP, ABCG2 , BHMT, STMNIDKR, JUND, NF1,
MCL1, PC326, PPARA, HSPA5, PGRMC1, TOP1, MRPL40, SERPINERCC1,
C5R1, CDK3, PSMD3, APOCS, HIF1A, SULT1C1, AMBP, VR22, $HRB2, TPH,
P311, GADD153, PRDX1, EPHX1, TUBA, CGI-45, ACAAL, HPRTNDUFSS,
LGALS3, CD66e, HRAS, TIMP1, PTPN9, ENC1, APG-1, C4BIR&DH-4, SEC61A2

Linear model —bootstrap
sample - set2

AHR, SERPINB2, ACTGP3, CASPS8, JAG1, PPP3R1, MYC, CALB1, Z&;F5AT,
ODC1, HIF1A, MTIE, SLC26A3, HDAC1, COL15A1, PCNA, TYM8GTIAS, BAX,
CDKNIA, UCP2, CEACAMS6, TTR, NOL5A, CASP4

van Delf

3. Results

3.1. Comparison of the selected sets of genes

Table 2 presents the highest ranked 100 genesnebtdiy each of the gene
selection methods described in Section 2.2.

The first row presents the set of the 100 mostiBognt genes ordered by
adjusted p-value obtained from the linear modeljctvhwas applied to 32
matrices from the learning set. In what followss thet is calledetl.

The second row of Table 2 presents the 100 highe&ed genes obtained
by the use of linear model combined with resampliag described in
Section 2.2. In what follows, this set is calketl.

Note that the order of genes includedsail andset2 differs. This affects
the discriminating power of the successive sub@sts Section 3.2). There are
77 genes contained in batétlandset2.
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The third row of Table 2 presents the 27 geneswaleby van Delfet al.
(2005). In what follows, this set of genes is ahlet3. There are 17 genes from
set3 which are also contained sat1l andset2.

3.2. Investigation of correlations of gene expressioren microarray spots

Table 3 presents the results of analysis of cdrogis between mean expression
on four repeated spots for each gene and the pomdsg values of gene
expression levels averaged over all GTX (or NGTAgroarrays (see Section
2.3 and Table 1). Discrimination between GTX andh-genotoxic group is
done here on the basis of the higher of two cons@tieorrelations connected
with the chemical compound in question.

If classification based on larger correlation cmé$ht is non-concordant
with the learning vector (real class belongingk #ppropriate microarray is
denoted by a star with the description of the GTMGTX group. From Table 3
we can see that the two misclassified GTX microarrbelong to the PAH
genotoxic group. One from the NGTX group has imgatt discordant
difference in correlations.

The analysis points to microarrays which are aslpidifficult to classify
based on correlation analysis. Those microarraysiso difficult to classify by
the examined discriminant methods whose summarizsdts are presented in
the next section (without considering in detail timécroarrays which are
classified incorrectly).

The most difficult to discriminate were microarrayom GTX: FA
(Fluoranthene) and GTX BaP-2 (Benzopyrerig)th FA (Fluoranthene) and
Ba-P (Benzopyrene) are chemical compounds from GAeX group PAX
(polycyclic aromatic hydrocarbons).

One problematic microarray, Dioxane, from the NGTXoup is also
visible, where the difference between the largaet smaller correlation is very
small (0.03), so the decision to select NGTX ishitfwl. This microarray is also
difficult to classify correctly in the discriminardnalyses examined in the
following section.
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Table 3.Pearson correlation coefficients between geneessjon levels for all
examined microarrays with averaged gene expressiail microarrays from the GTX
and NGTX groups respectively.

. . Non-
Chemical Correlauo.n with CONCOl-
compound Sample averaged m|cro'arraysdant Group
from group: decision

GTX NGTX
1 GTXMMS learning 0.48 -0.14
2 GTXMNU learning 0.72 0.01
3  GTXNNK learning 0.67 -0.34
4  GTXBaP-1 learning 0.69 0.07
5 GTXDBA learning 0.62 -0.18
6 GTXFA learning 0.15 0.50 * GTX- PAH
7  GTXcisPT learning 0.55 0.34
8 GTXCP learning 0.36 0.39
9 GTXMMC learning 0.68 0.22
10 GTXDMN testing 0.61 0.50
11 GTXBaP-2 testing 0.33 0.61 * GTX- PAH
12 GTX carboPt testing 0.46 0.33
13 NGTXDEHP-1 learning -0.01 0.91
14 NGTX Dioxane learning 0.57 0.60
15 NGTX PCP learning 0.29 0.87
16 NGTX PhB learning -0.08 0.88
17 NGTXTCDD learning 0.05 0.85
18 NGTXTCE learning 0.55 0.25 * NGTX
19 NGTXTPA learning -0.05 0.89
20 NGTX DEHP-2 testing 0.30 0.88
21 NGTX reserpine testing 0.47 0.43 * NGTX
22 NGTXTCP testing -0.11 0.76

3.3.The performance of the discrimination methods

Misclassification errors in the test dataset

Figures 1-2 and 3—4 show the misclassificationrgrestimated using the test
dataset for different discrimination methods applie a sequentially enlarged
set of genes frorsetl (Fig. 1-2) andset2 (Fig. 3—4)
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Figure. 1. Test classification errors of discriminant meth&évi, DLDA, DQDA,
k-NN for ascending subsets g1 (from 2 to 100 genes).
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Figure 2. Test classification errors of discriminant methaat¥aptive boosting trees

(AdaBoost), bagboosting trees (BagBoost) and bagmées, for ascending subsets
of set1 (from 2 to 100 genes).



50 M. Cwiklinska-Jurkowska, T. Burzykowski, M. Wietlickas2cz

0.8
|

—— Linear SWM, C=05
-4- DRDA
-es DLDA
s NN

Errors
0.4

g —&——8—a—a

0o
]

genes

Figure 3. Test classification errors of discriminant methd®¢M, DLDA, DQDA,
k-NN for ascending subsets &#2 (from 2 to 100 genes).

—+— AdaBoost
-4- BagBoost
--=-- Bagging Tree

0.6

Errars
0.4

0.z
|
-

P &
-
\\ -\\_/'\\ R
« “
B &—\A— N W ' FNY

——

0.o
|

T T T T T T
1] 20 40 60 an 100

genes

Figure 4. Test classification errors of discriminant methaat¥aptive boosting trees
(AdaBoost), bagboosting trees (BagBoost) and bagmées, for ascending subsets
of set2 (from 2 to 100 genes)

The misclassification error rates estimated by an-8old cross-validation

Figures 5-6 and 7-8 show the misclassification rerates estimated by
an 8-fold cross-validation (CV-8) for different digmination methods applied
to a sequentially enlarged set of genes fseth (Fig. 5-6) andset2 (Fig. 7-8)
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Figure 5. Classification cross-validation errors of discmant methods SVM, DLDA,
DQDA, k-NN for ascending subsetsst1 (from 2 to 100 genes)
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Figure 6. Cross-validation classification errors of discmiant methods: adaptive
boosting trees (AdaBoost), bagboosting trees (BagBand bagging trees,
for successive subsetsssfl (from 2 to 100 genes).

4. Discussion and conclusions

Figures 5-8 indicate that the misclassificatiomeeastimates obtained using the
8-fold cross-validation are, in general, smalleanththe estimates obtained by
applying the discrimination procedures to the tiedaset (see Figures 1-4).
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Figure 7. Cross-validation classification errors of discmieant methods: adaptive
boosting trees (AdaBoost), bagboosting trees (BagBand bagging trees,
for successive subsetsssf2 (from 2 to 100 genes).
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Figure 8. Cross-validation classification errors of discmieant methods: adaptive
boosting trees (AdaBoost), bagboosting trees (BagBand bagging trees,
for succeeding subsets k2 (from 2 to 100 genes).

This may be due to the fact that the test datas@hns six microarrays that are
“atypical” in the sense that they contain at mast dfferentially expressed
genes, as reported by van Daiftal. (2004). After exclusion of these arrays,
van Delft et al. (2004) noted an improvement in the estimates @& th
misclassification errors. In our analysis we retdirall the 12 microarrays in
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the test dataset. Note that, in the cross-validattbe “atypical” arrays are
distributed in different folds. Thus their influenmay be discounted.

The CV-based error estimates do not suggest anyoabethat would
consistently outperform all the others.

All the figures suggest that, in general, the usenty a few genes (2 or 5)
results in a larger misclassification error. Thasan may be that a limited set of
genes may also have a limited discriminative powesspective of whether the
genes themselves are important for discriminatrsimilar observation was
made, based on a simulation study, by Van Sasadan (2007, 2008).

In the analysis of the same dataset, van 2elfl. (2005) did not observe
clear differences (apart from the poorer performeainé Pearson analysis)
between the results obtained for different disammtion methods, which
included the Pearson correlation analysis, neatasinken centroids analysis,
K-nearest neighbour analysis, and weighted vofiigs is consistent with our
finding, and may be due to the limited number ofnmarrays that are available
for the analysis. However, the misclassificationoes for the discrimination
methods considered in the current paper, as esiihiat cross-validation, are
about two times smaller than those reported byDalit et al. (2005) for the
same dataset. This might be seen as a suggestbrih#n more advanced
discrimination techniques might yield better resullowever, it might also be
due to the different pre-processing steps useddwy Delft et al. (2005) to
prepare the data for the analysis.

It is also worth noting that 17 of the genes intidaby van Delftet al.
(2005) as important for discrimination purposes evarcluded in the set of
genes most often selected for building discrimovatiules considered in our
paper. The small misclassification errors may s & confirmation of the
correctness of gene selection methods. To conclogieresults suggest that,
when discrimination between genotoxic and non-gexiotcarcinogens is of
interest, the choice of the discrimination methoalyrbe important. However,
further evaluation on more extensive data is wae@nIn particular, the
possibility of using ensembles of classifiers maywrth investigating.
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